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An Equivalent Circuit for the “Centipede” Waveguide

T. M. REEDER

Abstract—An equivalent circuit is presented for the “centipede” be found to represent the waveguide, but it is difficult
coupled-cavity waveguide. The “centipede” waveguide, which is

typical of the class of slow-wave structures suitable for use in a

wide-band high-power traveling-wave tube, has two pass bands
which may interact strongly with a small-diameter electron beam.
The equivalent circuit is able to represent both of these pass bands.
A detailed comparison with an S-band “centipede” waveguide shows
that the equivalent circuit can represent the dispersion, interaction,
and loss characteristics of the waveguide within a few percent.

1. INTRODUCTION

T

HE COUPLED-CAVITY waveguide has found

extensive use in recent years as a slow-wave cir-

cuit in high-power, broadband traveling-wave

tubes. Coupled-cavity structures that use resonant

coupling elements are a logical choice for high-power

tube use because of their rugged construction, relatively

high interaction impedance, and large cold bandwidth,

often greater than 30 percent [1]. However, analytical

studies of tubes using these waveguides are usually

tedious because exact electromagnetic field solutions

are difficult, even impossible, to obtain. The analysis

may be made much simpler if an equivalent circuit can
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to find a simple circuit which will accurately represent

the propagation characteristics of broadband wave-

guides like the “cloverleaf” [1], the “long-slot” [2], and

the “centipede” [3] over all operating frequencies.

Equivalent circuits given first by Pierce [4] and later

used by Gould [5] and Collier et al. [6] provide an

adequate representation of relatively narrow-band

waveguides like the “space-harmonic” structure of

Chodorow and Nalos [7]. However, the fact that these

circuits do not include the effect of intercavity coupling

resonance leads to considerable error when they are ap-

plied to broadband coupled-cavity waveguides where

the cavity and coupling element resonant frequencies

may be close together. Curnow [8], [9] has recently

shown that by including the coupling element resonance,

the dispersion and impedance properties of the “long-

slot” waveguide can be accurately represented. Un-

fortunately, the equivalent circuit must correspond

closely to the geometrical configuration of the wave-

guide as both Curnow and Gittens [10] have demon-

strated. The resultant circuit may be quite complicated

and difficult to analyze.

The purpose of this paper is to show that one coupled-

cavity waveguide, the “centipede,” can be accurately

represented by a relatively simple equivalent circuit.

Waveguides in the “centipede” class have two pass
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Fig. 1. A view of the S-band “centipede” waveguide. Distributed
loss was added after this picture was taken.

m-l
1.300 875 2.850 I

I I I 3000

L..,OAIY062
Fig. 2. Cross-sectional drawing of a periodic section

of the S-band “centipede” waveguide.
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Fig. 3. The equivalent circuit.

bands with field distribution similar to the TM,,

cular waveguide mode. Both of these pass bands

important for traveling-wave tube operation, since
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cir-

are

the

TM,1 field configuration interacts strongly with a !small-

diameter electron beam. The equivalent circuit dis-

cussed here is shown to be an accurate model (of the

propagation characteristics for both of these pass bands.

The dispersion, interaction, and loss clharacterist.ics of

the circuit are derived and compared with experimental

data for an S-band “centipede” waveguide [11].

II. THE EQUIV~L~N~ CIRCUIT

The “centipede” waveguide may be described as a

chain of pillbox resonators in which the fields of one

cavity are heavily coupled to those of the next by a

resonant loop diaphragm. These loops, which are shown

in Figs. 1 and 2, provide negative mutual coupling in

that if two adjacent cavities have the same orientation

of transverse magnetic field, the fields will tend to can-

cel each other over the volume of the Ioc)ps.

Let us consider the partial schematic diagram shown

in Fig. 3. One might expect that an array of resonant

cavities coupled together by resonant loops could be

represented by an iterative equivalent circuit contain-

ing two resonant circuits, one representing the cavity

resonance and the other modeling the coupling-loop

resonance. In Fig, 3 the series resonant circuit 1.1 — Cl

represents the cavity resonance, and Cl is the effective

capacitance that a single cavity would present to an

electron beam shot through the axis of the cavity chain.

The resonance of the coupling loops is modeled by the

parallel circuit L2 – C2, and the negative mutual effect

of the loops is provided by the polarity inverting trans-

former. The effect of waveguide attenuation may be in-

cluded by adding loss to the two resonant circuits, as is

discussed in Section V. Since the equivalent circuit is to

represent waveguide modes with a TM 01 field distribu-

tion, the loop current at each circuit cavity 1. is, by

analogy, proportional to the current flowin,g in the wall

of the corresponding waveguide cavity.

III. CIRCUIT DISPERSION

A dispersion equation may be derived for the equiv-

alent circuit by studying the possible modes that may

propagate over an infinite set of cavities. we shall as-

sume that the propagation of modes may be represented

by

l.+l = e–rI~ (1)

where I’ is a complex propagation constant. given by

r=~+je. (2)

By writing down the mesh equations for a single cclupled

cavity, one finds that the circuit dispersion is given by

ZI
—cosh I’=l+—

2Z2
(3)
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where Z1 and Z2 are, respectively, the series impedance

of L1 —Cl and the shunt impedance of L~ —Ct.
We note that for frequencies in a pass band ( = O if

the circuit is lossless, and if we expand ZI and Zz, the

dispersion equation becomes

f’ – f’[faz + f,’ + 2kfa2(l + Cos o)] + fayb’ = o (4)

where it has been convenient to define

fa . l_ = cavity resonant frequency
2rrdLlC1

(5)

f, . l_ = coupling loop resonant frequency (6)
27r~LzCz

k = C1/C2 = coupling parameter. (7)

From (4), it is clear that the circuit has four cutoff

frequencies which may define two pass bands. One may

easily show that the two pass bands will look like those

shown in the Brillouin diagram, Fig. 4. The fact that

the lower frequency pass band is forward wave funda-

mental and the higher frequency pass band is backward

wave fundamental is expected from the analysis of

Chodorow and Craig [1] and is substantiated by the

experimental results of Gittens et al. [12] and Pearce

[3] for negative mutual coupled waveguides,

It will be instructive to consider the relations between

the four circuit cutoff frequencies defined in Fig. 4 and

the circuit constants ja, fb, and k. The following equa-

tions are deduced by solving (4) at O = O, z-:

fl’ + f42 = fa’(1 + qk) +h’ (8)

fl’ “f,’ = f(z2 “jb2 (9)

fz’ + f32 = f.’+ fb’ (lo)

f,’ “f,’ = fa’ “f,’. (11)

Equations (8) to (11) are sufficient to determine j., fb,
and k from the four circuit cutoff frequencies. However,

we note from (9) and (11) that

fl “f4 = f2 “f% (12)

Thus, only three of the four cutoff frequencies may be

selected arbitrarily y, the fourth being determined by (12).

If the cavity and coupling-loop resonant frequencies

are not equal, one can see from (10) and (11) that either

f. = f,

fll = f3 (13)

or

fb = f,

f. = f3. (14)

We conclude that only one of the two circuit resonances

may occur in each pass band and that one of these

resonances occurs at the upper frequency cutoff of the
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Fig. 4. .4 typical Brillouin diagram for the equi>-alent circuit.

lower pass band while the other is seen at the lower cut-

off of the higher frequency pass band. Since only one of

the resonances occurs in each pass band, the pass bands

are frequently referred to as the “cavity” pass band and

the ‘(coupling-loop” pass band.

Suppose we turn our attention to the constant k.

From (8) and (10) we find

k = (f42 – f3’) – (fz’ – f,’)

4fa’
(15)

which shows that k is related to the bandwidths of the

two pass bands. Although it is not obvious from (15), one

can show that k increases as the pass band bandwidths

become greater.

We are now prepared to compare the dispersion of the

equivalent circuit with the measured dispersion for the

‘(centipede” waveguide shown in Fig. 1. The waveguide

dispersion data, given in Fig. 5, is seen to have the same

form as the equivalent circuit Brillouin diagram, Fig. 4.

The waveguide was designed so that the coupling-loop

resonant frequency was higher than the cavity reso-

nance [11 ], and the lower pass band, which is the

operating pass band for traveling-wave tube use, is the

“cavity” pass band. Therefore, the circuit constants f.

and fb are related to the cutoff frequencies fz and f3 by

(13). Being most concerned that the circuit provides an

accurate model of the operating pass band, we shall

select fl and fz to be equal to the operating pass band

cutoff frequencies of the waveguide. The frequencies fi

and f4 are then selected so that (12) is satisfied, and the

difference between the dispersion for the circuit and

waveguide is small over the “loop” pass band. Having

chosen the cutoff frequencies for the equivalent circuit,

the constants fa, fb, and k can be computed from (13)

and (15), and the circuit dispersion can be calculated

from (4). The above method was used to compute the

equivalent circuit dispersion shown in Fig. 5. The
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Fig. 5. A comparison of the Brillouin diagram calculated for the
equivalent circuit with the experimentally measured data for the
‘(centipede” waveguide.

computed dispersion agrees with the experimental data

to within one-half percent over the operating pass band

and to within two percent over the coupling-loop pass

band.

IV. THE INT~R~CTION RATIO

The ratio I Ez ] ~/ WL has been shown to be a useful

quantity for comparing the relative worth of slow-

~vaveguides for traveling-wave tube use [1]. Here E= is

the axial electric field of mode traversing the guide and

JVl is the stored energy per unit length. For coupled-

cavity waveguides it is convenient to define an analo-

gous quantity I VI 2/ JV where V is the voltage across

one cavity and W is the energy stored per cavity. Here-

after, the quantity I VI ‘/W will be called the interaction

ratio.

In Section II 1, only three constraints (j., fb, and k)

v-ere placed upon the four energy storage elements of the

equivalent circuit in determining the circuit dispersion.

A fourth constraint will be provided here by forcing the

value of the interaction ratio calculated for the equiv-

alent circuit to match the value obtained experi-

mentally for the ‘(centipede” waveguide. The four cir-

cuit elements will then be uniquely defined.

The interaction ratio may be found experimentally

by well-known perturbation methods [3], [13] in which

a number of coupled-cavities are made resonant by the

addition of shorting plates located at planes of sym-

metry. If a thin dielectric rod is introduced along the

axis of the waveguide, the resonant frequency is s]-lifted

by an amount .Aj, and the quantity I E. I ‘l W is propor-

tional to Aj/f. We must then define a suitable relation

between V and E., over the cavity volume occupied by

the electron beam. The author has concluded [11 ]1 that

a suitable method is to define the cavity voltage :1S the

product of the root mean average of E. over the beam

volume times the cavity gap length. The experimental

interaction ratio then has the form

IV12 Af 4L

w - f (e – Co)Trd’
(16)

where L is the periodic length, d is the radius c}f the

perturbing rod, and e and COare the permittivity of the

rod and vacuo, respectively.

The equivalent circuit interaction ratio may be com-

puted as follows. With reference to Fig. 3, the cavity

voltage at the nth coupled-cavity is

V = IJjuCl (17)

and the average stored energy in the nth cavity is

given by

: ~lLI’++~l L+.L+d’(18)w=—

where Xl and X2 are the reactance of the cavity and

coupling-loop resonant circuits. By combining (17) and

(18) with the mode assumption (1) and the dispersion

equation (3), the equivalent circuit interaction ratio is

shown to be

I v]’ 2 1 -f’/f,’
—.

w=
(19)

c, 1 – j~,ifa’fb’

The constants f,, and f, were fixed when the circuit dis-

persion was specified, but Cl is still arbitrary.

Equations (16) and (19) provide the means to match

the interaction ratio of the equivalent circuit and ex-

perimental waveguide. We can select Cl so that the

right-hand sides of (16) and (19) are equal at all fre-

quencies of interest. As a basis for comparison, the ex-

perimentally measured I VI 2/ W data for the operating

pass band of the “centipede” waveguide is shown in

Fig. 6 along with the computed curve for the equivalent

circuit with Cl arbitrarily chosen to be 3.8 pF. At first

glance it would appear that the circuit does not ac-

curately represent the waveguide interaction ratic) over

the entire pass band if Cl is a constant. There are, how-

ever, two points to consider. The small signal gain of a

traveling-wave tube is approximately eq uall to the cube

root of the interaction ratio. The error introduced into

a gain calculation is therefore about one third c]f the

percentage by which the circuit fails to predict the

waveguide I VI 2/ W data. We should also consider that,

although one would like to make the circuit elements
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Fig. 6. A comparison of the interaction ratio computed for the
equivalent circuit with experimentally measured data for the
‘(centipede” waveguide.

constant, the physical analogy given in Section I I is not

invalidated by allowing Cl to be a function of fre-

quency. By selecting Cl at each frequency of interest,

the equivalent circuit could predict the interaction ratio

of the “centipede” waveguide over the entire operating

pass band.

V. THE ADDITION OF Loss

The effect of distributed waveguide loss may be in-

cluded in the equivalent circuit by adding loss elements

to the resonant circuits L1 — Cl and Lz – C2. VVhen loss

is present, the resonant circuit impedances become

21 = jOJLl(l – jDl) + ~lz (20)

1
22 =

1
(21)

jkc,(l – jll,) + —
jwL2

where D1 and D2 are the reciprocals of the resonant cir-

cuit Q factors. We shall assume that the loss is evenly

divided between the two resonant circuits, that is,

DI=D2=D. (22)

If the above expressions are substituted into (3), the

circuit dispersion equation, we find

cosh ~ COS 6

= -fZ(l – ~’) +jaYb2/j2 – fa’(1 + 2k) – fb’

2kfa2

(23)

D fa’ ● f,’ – 2f2

()
sinh ~ sin O = —

2k f.’ “
(24)
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7. A comparison of the circuit attenuation calculated for the
equivalent circuit w~th the experimentally measured data for the
“centipede” wavegmde.

Equations (23) and (24) may be solved for ~ and 0 once

D and j are known.

If the circuit is not excessively Iossy, approximate

solutions of (23) and (24) may be found. Suppose that

D is 0.05 or less (circuit Q’s of 20 or greater). Then $

will also be small so that the small argument approxi-

mations of sinh .$ and cosh .$ may be used. With small

error in the middle of a pass band, (23) may be replaced

by (4), the lossless dispersion equation, and (24) be-

comes

Similarly, one can verify that at a cutoff frequency

(25)

(26)

These approximate solutions are accurate to within ten

percent for ~ less than 0.3 nepers/cavity (2,5 dB/cav-

it y).

In Fig. 7 the experimentally measured attenuation

for the “centipede” waveguide is shown for the operat-

ing pass band. We estimate D = 0.0407 from the mid-

band data and (25). Then, from (23) and (24), we can

compute the equivalent circuit attenuation which is also

shown in Fig. 7. It can be seen that the circuit provides

a very good model of the waveguide attenuation. The

difference between the computed curve and the mea-

sured data is less than ten percent over the operating

pass band.
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the result of a

search for a simple model which can represent, at Ieast

qualitatively, the propagation characteristics of all

coupled-cavity waveguides that use resonant coupling

elements. It has been shown that the circuit provides a

very good model for the ‘{centipede” waveguide. The

dispersion of the two most important pass bands of an

S-band “centipede” waveguide has been represented to

within a few percent. The interactic,n ratio and wave-

guide attenuation for the operating pass band have also

been accurately modeled, although for the greatest ac-

curacy it was necessary to allow the circuit elements to

vary slightly with frequency.

The most important feature of the equivalent circuit

is its simplicity. Only five parameters are needed to

specify its propagation characteristics, and these

parameters give direct insight into the electrical be-

havior of the circuit and the analogous ~vaveguide. The

parameters~~, j~, and k determine the circuit dispersion,

Cl determines the interaction ratio, and D specifies the

circuit attenuation. Finally, we note that the circuit

represents the important electrical resonances of the

waveguide, rather than its mechanical details. The cir-

cuit can therefore be expected to provide a qualitative

model for other cavity chain waveguides which, like the

“entipede,” use resonant coupling ellements.
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Corrections

R. E. Collin, author of the paper, “Electromagnetic

Potentials and Field Expansions for Plasma Radiation

in Waveguides,’) which appeared on pages 41 3–420 of

the July, 1965, issue, submits the following.

The upper limit of integration in (equations (19) and

(24) should be

~=, _lz-.’!
c

P. J. Meier and S. Arnow, authors of the paper,

“Wide-Band Polarizer in Circular Waveguide Loaded

with Dielectric Discs, ” which appeared on pages 763–

767 of the November, 1965, issue, wish to note the fol-

lowing.

In formula (14), page 765, the Iast term in the de-

nominator ~ 1 should appear outside the radical.

In Section II, page 763, A,, & should read (%, &

and not infinity.


