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An Equivalent Circuit for the “Centipede” Waveguide

T. M. REEDER

Abstract—An equivalent circuit is presented for the “centipede”
coupled-cavity waveguide. The “centipede” waveguide, which is
typical of the class of slow-wave structures suitable for use in a
wide-band high-power traveling-wave tube, has two pass bands
which may interact strongly with a small~diameter electron beam.
The equivalent circuit is able to represent both of these pass bands.
A detailed comparison with an S-band “centipede” waveguide shows
that the equivalent circuit can represent the dispersion, interaction,
and loss characteristics of the waveguide within a few percent.

I. INTRODUCTION

HE COUPLED-CAVITY waveguide has found

extensive use in recent years as a slow-wave cir-

cuit in high-power, broadband traveling-wave
tubes. Coupled-cavity structures that use resonant
coupling elements are a logical choice for high-power
tube use because of their rugged construction, relatively
high interaction impedance, and large cold bandwidth,
often greater than 30 percent [1]. However, analytical
studies of tubes using these waveguides are usually
tedious because exact electromagnetic field solutions
are difficult, even impossible, to obtain. The analysis
may be made much simpler if an equivalent circuit can
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be found to represent the waveguide, but it is difficult
to find a simple circuit which will accurately represent
the propagation characteristics of broadband wave-
guides like the “cloverleaf” [1], the “long-slot” [2], and
the “centipede” [3] over all operating frequencies.

Equivalent circuits given first by Pierce [4] and later
used by Gould [5] and Collier et al. [6] provide an
adequate representation of relatively narrow-band
waveguides like the “space-harmonic” structure of
Chodorow and Nalos [7]. However, the fact that these
circuits do not include the effect of intercavity coupling
resonance leads to considerable error when they are ap-
plied to broadband coupled-cavity waveguides where
the cavity and coupling element resonant frequencies
may be close together. Curnow [8], [9] has recently
shown that by including the coupling element resonance,
the dispersion and impedance properties of the “long-
slot” waveguide can be accurately represented. Un-
fortunately, the equivalent circuit must correspond
closely to the geometrical configuration of the wave-
guide as both Curnow and Gittens [10] have demon-
strated. The resultant circuit may be quite complicated
and difficult to analyze.

The purpose of this paper is to show that one coupled-
cavity waveguide, the “centipede,” can be accurately
represented by a relatively simple equivalent circuit.
Waveguides in the “centipede” class have two pass
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Fig. 1.

A view of the S-band “centipede” waveguide. Distributed
loss was added after this picture was taken.
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Fig. 2. Cross-sectional drawing of a periodic section

of the S-band “centipede” waveguide.
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Fig. 3.

bands with field distribution similar to the TM,; cir-
cular waveguide mode. Both of these pass bands are
important for traveling-wave tube operation, since the
TM,; field configuration interacts strongly with a small-
diameter electron beam. The equivalent circuit dis-
cussed here is shown to be an accurate model of the
propagation characteristics for both of these pass bands.
The dispersion, interaction, and loss characteristics of
the circuit are derived and compared with experimental
data for an S-band “centipede” waveguide [11].

I1I. TeE EQUIVALENT CIRCUIT

The “centipede” waveguide may be described as a
chain of pillbox resonators in which the fields of one
cavity are heavily coupled to those of the next by a
resonant loop diaphragm. These loops, which are shown
in Figs. 1 and 2, provide negative mutual coupling in
that if two adjacent cavities have the same orientation
of transverse magnetic field, the fields will tend to can-
cel each other over the volume of the loops.

Let us consider the partial schematic diagram shown
in Fig. 3. One might expect that an array of resonant
cavities coupled together by resonant loops could be
represented by an iterative equivalent circuit contain-
ing two resonant circuits, one representing the cavity
resonance and the other modeling the coupling-loop
resonance. In Fig. 3 the series resonant circuit L;—C;
represents the cavity resonance, and C, is the effective
capacitance that a single cavity would present to an
electron beam shot through the axis of the cavity chain.
The resonance of the coupling loops is modeled by the
parallel circuit Ls— C5, and the negative mutual effect
of the loops is provided by the polarity inverting trans-
former. The effect of waveguide attenuation may be in-
cluded by adding loss to the two resonant circuits, as is
discussed in Section V. Since the equivalent circuit is to
represent waveguide modes with a TMy field distribu-
tion, the loop current at each circuit cavity I, is, by
analogy, proportional to the current flowing in the wall
of the corresponding waveguide cavity.

I1I. Circuir DIiSPERSION

A dispersion equation may be derived for the equiv-
alent circuit by studying the possible modes that may
propagate over an infinite set of cavities. We shall as-
sume that the propagation of modes may be represented
by

In+1 = ehrln (1)
where I' is a complex propagation constant given by
= £+ j6. (2)

By writing down the mesh equations for a single coupled
cavity, one finds that the circuit dispersion is given by

WD =14 2 3)
— COS = —
27,
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where Z1 and Z; are, respectively, the series impedance
of Ly — (' and the shunt impedance of L, — Cs.

We note that for frequencies in a pass band £=0 if
the circuit is lossless, and if we expand Z; and Zs, the
dispersion equation becomes

F4 = Flfa? + fo? + 2820 + cos 0)] + £ = 0 (4)

where it has been convenient to define

1
. = ————— = cavity resonant frequenc )
fo=o JI.C. y quency
1 .
fo = m—g = coupling loop resonant frequency (6)
U 22
k = C1/Cs = coupling parameter. (N

From (4), it is clear that the circuit has four cutoff
frequencies which may define two pass bands. One may
easily show that the two pass bands will look like those
shown in the Brillouin diagram, Fig. 4. The fact that
the lower frequency pass band is forward wave funda-
mental and the higher frequency pass band is backward
wave fundamental is expected from the analysis of
Chodorow and Craig [1] and is substantiated by the
experimental results of Gittens et al. [12] and Pearce
[3] for negative mutual coupled waveguides.

It will be instructive to consider the relations between
the four circuit cutoff frequencies defined in Fig. 4 and
the circuit constants f,, f,, and k. The following equa-
tions are deduced by solving (4) at 8=0, =:

[P+ fa? = 20+ 4k) + fu? (8)
ffd =12 ©
PP =LA (10)
fotofs? = fa? (11)

Equations (8) to (11) are sufficient to determine f,, f5,
and & from the four circuit cutoff frequencies. However,
we note from (9) and (11) that

frfs = fo fa. (12)

Thus, only three of the four cutoff frequencies may be
selected arbitrarily, the fourth being determined by {12).

If the cavity and coupling-loop resonant frequencies
are not equal, one can see from (10) and (11) that either

fo=1/a

fo=1/s (13)
or

Jo =12

fo = fs (14)

We conclude that only one of the two circuit resonances
may occur in each pass band and that one of these
resonances occurs at the upper frequency cutoff of the

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

APRIL

FREQUENCY

I i |

o} n/2 n 3n/2 2
PHASE SHIFT PER CAVITY

Fig. 4. A typical Brillouin diagram for the equivalent circuit.

lower pass band while the other is seen at the lower cut-
off of the higher frequency pass band. Since only one of
the resonances occurs in each pass band, the pass bands
are frequently referred to as the “cavity” pass band and
the “coupling-loop” pass band.

Suppose we turn our attention to the constant k.
From (8) and (10) we find

_ (f& — f3) — (f* — /1)
4f.2

which shows that £ is related to the bandwidths of the
two pass bands. Although it is not obvious from (15), one
can show that % increases as the pass band bandwidths
become greater.

We are now prepared to compare the dispersion of the
equivalent circuit with the measured dispersion for the
“centipede’” waveguide shown in Fig. 1. The waveguide
dispersion data, given in Fig. 5, is seen to have the same
form as the equivalent circuit Brillouin diagram, Fig. 4.
The waveguide was designed so that the coupling-loop
resonant frequency was higher than the cavity reso-
nance [11], and the lower pass band, which is the
operating pass band for traveling-wave tube use, is the
“cavity” pass band. Therefore, the circuit constants f,
and f;, are related to the cutoff frequencies f; and f; by
(13). Being most concerned that the circuit provides an
accurate model of the operating pass band, we shall
select f1 and f; to be equal to the operating pass band
cutoff frequencies of the waveguide. The frequencies f;
and f; are then selected so that (12) is satisfied, and the
difference between the dispersion for the circuit and
waveguide is small over the “loop” pass band. Having
chosen the cutoff frequencies for the equivalent circuit,
the constants f,, f5, and % can be computed from (13)
and (15), and the circuit dispersion can be calculated
from (4). The above method was used to compute the
equivalent circuit dispersion shown in Fig. 5. The

k (15)
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Fig. 5. A comparison of the Brillouin diagram calculated for the
equivalent circuit with the experimentally measured data for the
“centipede” waveguide.

computed dispersion agrees with the experimental data
to within one-half percent over the operating pass band
and to within two percent over the coupling-loop pass
band.

IV. TueE INTERACTION RATIO

The ratio [EZ 2/, has been shown to be a useful
quantity for comparing the relative worth of slow-
waveguides for traveling-wave tube use [1]. Here E, is
the axial electric field of mode traversing the guide and
W, is the stored energy per unit length. For coupled-
cavity waveguides it is convenient to define an analo-
gous quantity , VIQ/IV where V is the voltage across
one cavity and W is the energy stored per cavity. Here-
after, the quantity | I7]*/1V will be called the interaction
ratio.

In Section IlI, only three constraints (f,, f, and k)
were placed upon the four energy storage elements of the
equivalent circuit in determining the circuit dispersion.
A fourth constraint will be provided here by forcing the
value of the interaction ratio calculated for the equiv-
alent circuit to match the value obtained experi-
mentally for the “centipede” waveguide. The four cir-
cuit elements will then be uniquely defined.

The interaction ratio may be found experimentally
by well-known perturbation methods [3], [13] in which
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a number of coupled-cavities are made resonant by the
addition of shorting plates located at planes of sym-
metry. If a thin dielectric rod is introduced along the
axis of the waveguide, the resonant frequency is shifted
by an amount Af, and the quantity (Ez[ */W is propor-
tional to Af/f. We must then define a suitable relation
between V and E,, over the cavity volume occupied by
the electron beam. The author has concluded [11] that
a suitable method is to define the cavity voltage as the
product of the root mean average of E, over the beam
volume times the cavity gap length. The experimental
interaction ratio then has the form

| v lAf 4L
W f | (e — eo)ymd?
where L is the periodic length, d is the radius of the
perturbing rod, and e and € are the permittivity of the
rod and vacuo, respectively.
The equivalent circuit interaction ratio may be com-

puted as follows. With reference to Fig. 3, the cavity
voltage at the nth coupled-cavity is

V = In jw01

(16)

(17)

and the average stored energy in the #nth cavity is
given by
1 dX,

- L+ —

Zdw 4

dAY‘)

Lo+ Lyt (18)
where X, and X, are the reactances of the cavity and
coupling-loop resonant circuits. By combining (17) and
(18) with the mode assumption (1) and the dispersion
equation (3), the equivalent circuit interaction ratio is
shown to be

vz 2

w = 1 '—f4,/fu2fb2 '

L=

(19)

The constants f, and f, were fixed when the circuit dis-
persion was specified, but C; is still arbitrary.

Equations (16) and (19) provide the means to match
the interaction ratio of the equivalent circuit and ex-
perimental waveguide. We can select C; so that the
right-hand sides of (16) and (19) are equal at all fre-
quencies of interest. As a basis for comparison, the ex-
perimentally measured ! V[ ?/W data for the operating
pass band of the “centipede” waveguide is shown in
Fig. 6 along with the computed curve for the equivalent
circuit with C; arbitrarily chosen to be 3.8 pF. At first
glance it would appear that the circuit does not ac-
curately represent the waveguide interaction ratio over
the entire pass band if C; is a constant. There are, how-
ever, two points to consider. The small signal gain of a
traveling-wave tube is approximately equal to the cube
root of the interaction ratio. The error introduced into
a gain calculation is therefore about one third of the
percentage by which the circuit fails to predict the
waveguide I VI 2/W data. We should also consider that,
although one would like to make the circuit elements
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Fig. 6. A comparison of the interaction ratio computed for the
equivalent circuit with experimentally measured data for the
“centipede” waveguide.

constant, the physical analogy given in Section I is not
invalidated by allowing C; to be a function of fre-
quency. By selecting C; at each frequency of interest,
the equivalent circuit could predict the interaction ratio
of the “centipede” waveguide over the entire operating
pass band.

V. Tue AbbitioN oF Loss

The effect of distributed waveguide loss may be in-
cluded in the equivalent circuit by adding loss elements
to the resonant circuits L;— Cy and L:— Cs. When loss
is present, the resonant circuit impedances become

. . 1
Zl = ]le(l - ].Dl) + I (20)
]wC1

1
22:

21)

ij2(1 —jDz) +

Jwile

where Dy and D; are the reciprocals of the resonant cir-
cuit Q factors. We shall assume that the loss is evenly
divided between the two resonant circuits, that is,

D, = D, = D. (22)

If the above expressions are substituted into (3), the
circuit dispersion equation, we find

cosh £ cos 6

_ LA = DY) A L2 — S+ 2R) — f?

TR (23)
sinh £sin § = (£>w . (24)
2k fa?
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Fig. 7. A comparison of the circuit attenuation calculated for the
equivalent circuit with the experimentally measured data for the
“centipede” waveguide.

Equations (23) and (24) may be solved for £ and 8 once
D and f are known.

If the circuit is not excessively lossy, approximate
solutions of (23) and (24) may be found. Suppose that
D is 0.05 or less (circuit Q's of 20 or greater). Then &
will also be small so that the small argument approxi-
mations of sinh £ and cosh £ may be used. With small
error in the middle of a pass band, (23) may be replaced
by (4), the lossless dispersion equation, and (24) be-
comes

D a2 _'_ 2 2 2
=~ <_>f_fb—]i . (25)
2k fa? sin 6
Similarly, one can verify that at a cutoff frequency
D ‘fa2+fb2—2f2]
=~ V(—>“_— . (26)
2k fa?

These approximate solutions are accurate to within ten
percent for £ less than 0.3 nepers/cavity (2.5 dB/cav-
ity).

In Fig. 7 the experimentally measured attenuation
for the “centipede” waveguide is shown for the operat-
ing pass band. We estimate D=0.0407 from the mid-
band data and (25). Then, {rom (23) and (24), we can
compute the equivalent circuit attenuation which is also
shown in Fig. 7. [t can be seen that the circuit provides
a very good model of the waveguide attenuation. The
difference between the computed curve and the mea-
sured data is less than ten percent over the operating
pass band.



1966 REEDER: ‘“CENTIPEDE”

VI. CoNcLUSIONS

The equivalent circuit discussed here is the result of a
search for a simple model which can represent, at least
qualitatively, the propagation characteristics of all
coupled-cavity waveguides that use resonant coupling
elements. It has been shown that the circuit provides a
very good model for the “centipede” waveguide. The
dispersion of the two most important pass bands of an
S-band “centipede” waveguide has been represented to
within a few percent. The interaction ratio and wave-
guide attenuation for the operating pass band have also
been accurately modeled, although for the greatest ac-
curacy it was necessary to allow the circuit elements to
vary slightly with frequency.

The most important feature of the equivalent circuit
is its simplicity. Only five parameters are needed to
specify its propagation characteristics, and these
parameters give direct insight into the electrical be-
havior of the circuit and the analogous waveguide. The
parameters f,, f», and %k determine the circuit dispersion,
C; determines the interaction ratio, and D specifies the
circuit attenuation. Finally, we note that the circuit
represents the important electrical resonances of the
waveguide, rather than its mechanical details. The cir-
cuit can therefore be expected to provide a qualitative
model for other cavity chain waveguides which, like the
“centipede,” use resonant coupling elements.
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Corrections

R. E. Collin, author of the paper, “Electromagnetic
Potentials and Field Expansions for Plasma Radiation
in Waveguides,” which appeared on pages 413-420 of
the July, 1965, issue, submits the following.

The upper limit of integration in equations (19) and
(24) should be
|2 — #]

r=1—
¢

and not infinity.

P. J. Meier and S. Arnow, authors of the paper,
“Wide-Band Polarizer in Circular Waveguide Loaded
with Dielectric Discs,” which appeared on pages 763—
767 of the November, 1965, issue, wish to note the fol-
lowing.

In formula (14), page 765, the last term in the de-
nominator + 1 should appear outside the radical.

In Section II, page 763, Az, B3 should read 8,, Bs.



